新闻资讯
热门推荐
- 中国对英伟达发起反垄断调查会产生哪些效果?
- 数字健康与远程医疗技术:重塑医疗未来
- 工业机器人与未来制造业就业形势
- 企业人力资源部年终应该做好的几件事
- 企业人力资源总监如何搭建文化体系?
- 郑州猎头公司在帮企业引进人才的时有哪些优势?企业为什么自己招聘不到人才?
- 未来猎头行业发展趋势对企业和人才的影响
- 案例分析:判断候选人离职时间与公司内部问题的关联
- 如何判断候选人的离职时间是否与公司内部问题有关?
咨询热线 400-8325-007
热门标签
- 省海外高层次人才引进计划 郑州猎头公司电话 郑州十大猎头公司 海外人才 省海外高层次人才 郑州有名的猎头公司 郑州猎头公司有哪些 海外高层次人才 郑州猎头公司顾问 郑州垒头 郑州猎头公司前十名 郑州著名猎头公司 郑州猎头 郑州猎头公司收费标准 郑州猎头公司服务 郑州靠谱猎头公司 国家海外高层次人才引进计划 郑州大型猎头公司 储能技术 郑州优秀猎头公司 郑州猎头企业 郑州猎头公司收费 河南郑州有哪些猎头公司 高级人才 郑州猎头机构 储能系统集成 郑州猎头公司 国家海外高层次人才 郑州猎头服务公司 猎头公司 郑州猎头公司排名 高层次人才 储能.储能系统 郑州知名猎头公司 郑州珏佳猎头公司 高端人才 河南猎头公司 郑州专业猎头公司 郑州猎头公司哪家 郑州有哪些猎头公司 郑州猎头公司哪家好 储能系统有哪些分类 郑州垒头公司收费
组装工业机器人的关键技术?
在智能制造领域中,工业机器人有三类关键技术
1)整机技术
整机技术是指以提高工业机器人产品的可靠性和控制性能,提升工业机器人的负载/自重比,实现工业机器人的系列化设计和批量化制造为目标的机器人技术。主要有:本体优化设计技术、机器人系列化标准化设计技术、机器人批量化生产制造技术、快速标定和误差修正技术、机器人系统软件平台等。本体优化设计技术是其中的代表性技术。
本体优化设计技术即对工业机器人的本体进行优化设计和性能评估的技术。在现代工业生产的一些高速、重载的应用场合下,需要保证工业机器人加工过程中的运动精度和运动平稳性,因此在工业机器人的本体结构设计开发时,必须对其惯性参数和结构参数进行不断优化,使机构的质量、刚度得到合理的分布,工业机器人整机具有良好的动态性能。基本流程是:首先根据生产需求设计工业机器人机械结构,利用三维软件建立本体结构模型,并进行虚拟装配,然后利用计算机仿真技术对机器人进行运动学和动力学仿真分析,分析机器人的各项性能;最后利用有限元技术等方法对结构进行优化,以实现机器人的轻量化,提高机器人的动态性能。
本体优化设计,在本体结构轻量化设计方面,主要体现在新材料、新工艺和结构优化理论的应用上;在本体结构模块化设计方面,主要体现在各种机构的选用和组合上。
2)部件技术
部件技术是指以研发高性能机器人零部件,满足工业机器人关键部件需求为目标的机器人技术。主要有:高性能伺服电机设计制造技术、高性能/高精度机器人专用减速器设计制造技术、开放式/跨平台机器人专用控制(软件)技术、变负载高性能伺服控制技术等。高性能伺服电机设计制造技术和高性能/高精度机器人专用减速器设计制造技术是其中的代表性技术。
伺服电机是指在伺服系统中控制机械元件运转的发动机,能将电压信号转化为转矩和转速信号以驱动控制对象,是机器人的核心零部件之一,伺服电机作为工业机器人的关键执行部件,是驱动工业机器人运动的主要动力系统,伺服电机的性能很大程度上决定了工业机器人整体的动力性能。工业机器人领域中应用的伺服电机应具有快速响应、高启动转矩、低惯量、宽广且平滑的调速范围等特性,目前应用较多的是交流伺服电机。设计高性能高功率密度伺服电机需要根据设计指标综合考虑电机结构参数、部件材料、磁路结构等要素,并通过有限元等方法综合分析电机性能。
伺服电机,减速器通常用作原动件与工作机之间的减速传动装置,起到匹配转速和传递转矩的作用,一般由封闭在刚性壳体内的齿轮传动、蜗杆传动、齿轮-蜗杆传动组成,是机器人传动机构的核心部件之一,机器人领域常用的精密传动装置主要有轻载条件下的谐波减速器和重载条件下的RV减速器。谐波减速器具有轻量小型、无齿轮间隙、高转矩容量等优点,但其精度寿命较差,主要是由于在高度循环的交变应力情况下柔轮极易出现疲劳失效,通常应用在关节型机器人的末端执行等轻载部位;RV减速器主要包含了行星齿轮与摆线针轮两级减速两个部分,具有减速范围宽、功率密度大、运行平稳等优点,已成为工业机器人最常用的精密减速器。设计高性能/高精度机器人专用减速器需综合考虑传动精度、齿廓修形、扭转刚度以及回差等技术指标。
减速器,当前,我国高性能伺服电机、减速器等关键零部件的设计制造技术与外国相比,在可靠性、精度、动态反应能力等方面存在一定差距,是制约我国工业机器人发展的瓶颈之一。
3)集成应用技术
集成应用技术是指以提升工业机器人任务重构、偏差自适应调整能力,提高机器人人机交互性能为目标的机器人技术。主要有:基于智能传感器的智能控制技术、远程故障诊断及维护技术、基于末端力检测的力控制及应用技术、快速编程和智能示教技术、生产线快速标定技术、视觉识别和定位技术等。视觉识别定位技术是其中的代表性技术。
视觉识别和定位技术是一项涉及人工智能、图像处理、传感器技术和计算机技术等多领域的综合技术,与工业机器人结合非常紧密,广泛地应用在工业生产中的缺陷检测、目标识别与定位和智能导航等方面。典型的视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。
视觉应用系统,视觉识别和定位技术在工业机器人领域的应用主要以下3个方面:
(1)视觉测量:针对精度要求较高(毫米级甚至为微米级)的零部件,使用人的肉眼无法完成其精度测量,通过引入视觉非接触测量技术构成机器人柔性在线测量系统,能够有效获取零部件表面质量和基本尺寸信息。
(2)视觉引导:基于机器视觉技术能够快速准确地找到目标零件并确认其位置,采用模式识别的方式,在三维图像中获取目标点或目标轨迹引导工业机器人抓取、加工等操作,提高生产智能化程度,实现自动化作业。
(3)视觉检测:通过机器视觉检测完成产品的制造工艺检测、自动化跟踪、追溯与控制等生产环节,识别零件的存在或缺失以保证部件装配的完整性,判别产品表面缺陷以保证 生产质量。
视觉识别和定位技术的应用使得工业机器人能够适应复杂工业环境中的智能柔性化生产,大大提高了工业生产中的智能化和自动化水平。工业机器人的关键技术推动了机器人产品的系列化设计和批量化制造。